

FIELDCOURSE ON CHERNOBYL FALLOUT IN THE ENVIRONMENT

Sampling of soil, plants/biota and animal products

¹³⁷Cs contamination of Ukraine (Atlas, 2008)

For 2008 area with ¹³⁷Cs contamination > 40 kBq/m² was 25 500 km², but the area of the zones of radioactive contamination are 53 000 km²

More and big samples - the better, but we have COMET

Heterogeneity of density of radionuclides contamination (a), soil types (b) and land use (c)

 $f_{reg}(x, y)$

 $f(x, y) = f_{reg}(x, y) \cdot f_{loc}(x, y) \cdot f_r$

- • $f_{reg}(x, y)$ decrease or increase in the density of contamination (trend) within the subject site .
- $f_{loc}(x, y)$ contamination density deviation from trend (hot "spot" of contamination).
- f_r random component is due microinhomogeneity deposition, technique and process sampling, error of preparation and measurement of the activity of samples. It does not depend on the coordinates of the point of sampling.
- Function is strictly positive and the our work is considered as a z(x, y), where f(x, y) = exp(z(x, y)) – logarithm of density deposition. In this multiplicative model f(x, y) is replaced by the additive model :

$$z(x, y) = z_{reg}(x, y) + z_{loc}(x, y) + z_r$$

Grid

SAMPLING FOR RADIONUCLIDES IN THE ENVIRONMENT

SAMPLING OPTIMIZATION

The results of researches conducted by UIAR during elimination of consequences of catastrophe on ChNPP, concerning basic and urgent problem of radioecological monitoring representative sampling of soil, plants and milk, and also measurement of samples having an essential volumetric heterogeneity (hot particles) are generalized. The questions of optimum planning of selection representative samples for the samples of the soil, plants and milk are considered. The methods of account of minimum necessary number of samples excerpt for an estimation of average of the con-trolled quantity with the given relative error are offered.

Ю. В. Хомутинин, В. А. Кашпаров, Е. И. Жебровская

ОПТИМИЗАЦИЯ ОТБОРА И ИЗМЕРЕНИЙ ПРОБ ПРИ РАДИОЭКОЛОГИЧЕСКОМ МОНИТОРИНГЕ

Knes 2001

UIAR has developed the special standards for sampling

Next major tasks are considered and solved in the presented monograph:

- To estimate statistical performances of radioactive contamination of soil, vegetation and transfer factors of radionuclides in a link "soil plant" at the sites with non-gradient contamination. To determine the kind of probability distribution of soil, vegetation contamination and transfer factors at such sites and to estimate their parameters.
- To estimate the radius of influence of soil and plants sample and to estimate centre to centre distance of sampling, which ensures statistical independence of radionuclides contents in samples at site with non-gradient contamination;
- To determine necessary minimum amount of soil, plants, fish and milk samples when radioecological monitoring, that are necessary for estimation of median of contamination of considered objects (including their derivatives, for example, radionuclides transfer factors from soil to plants) with a specified ratio error.
- To optimise the milk sampling schedule in the private farms in the settlements for estimating annual individual doze of internal exposure with a specified ratio error.
- To construct the nomograms providing practical use of the offered procedures for planning soil, plants and milk sampling.

The scheme of the experimental sample sites at the areas with the global radioactive fallouts and the basic radiological station of UIAR (¹³⁷Cs density of contamination).

The scheme of the experimental sample sites in the 30-km zone and at the adjacent areas (¹³⁷Cs density of contamination)

The scheme of soil and plants sampling

100x100 m

Geostatistical image of the ¹³⁷Cs contamination of the experimental site S-P 17

Geostatistical image of the ¹³⁷Cs contamination of the

- *Cso* soil density contamination with the radionuclides;
- μ_{so} average log of radionuclides density contamination of the site;
- s_{so} standard deviation of log of radionuclides density contamination of the site.

The influence of density fallouts and sampling pitch on standard deviation of log of soil density contamination with ¹³⁷Cs.

C

The relation between standard deviations of log of soil density contamination with ¹³⁷Cs depending on area of sampling fuel and condensation traces of fallouts.

CØ

The influence of the kind of fallouts and some landscape particularities on standard deviation of log of soil density contamination with ¹³⁷Cs when sampling square is of S₁ = 0.005 m²

Generalised values of standard deviation of log of soil density contamination with ¹³⁷Cs for different experimental sites brought to sampling square 0.005 m²

COMET

Density of ¹³⁷Cs contamination

 A_{soil} , GM=178 kBq/m² (W=0.32) D_{ext} / A_{soil} = 1.3E-03

 A_{soil} , GM=194 kBq/m² (w=0.34) D_{ext} / A_{soil} = 1.7E-03

Forest density ¹³⁷Cs contamination

The standard deviation of log of the soil density contamination with ¹³⁷Cs (condensate) of non-gradient site in forests (a-pine and b - birch) with contamination sites for sampling squares > 0.005 m² is evaluated with value 0.34 and 0.32

Conclusions 1

- 1. The soil contamination density with ¹³⁷Cs and the specific ¹³⁷Cs content in plants on non-gradient with contamination sites located on the Chernobyl traces and on the global radioactive fallout is satisfactorily described with the logarithmically normal law of probability distributions;
- 2. The standard deviation of log of the soil density contamination with ¹³⁷Cs of non-gradient with contamination sites for sampling squares > 0.005 m² does not depend on density contamination, type of fallout, features of landscape and at first approximation with errors of measurement of the radionuclide content in sub-samples of soil samples \leq 10 % at the level $\pm 2\sigma$ is evaluated with value 0.30 \pm 0.09

Contents lists available at ScienceDirect

Journal of Environmental Radioactivity

journal homepage: www.elsevier.com/locate/jenvrad

CrossMark

ADIOACTIVITY

Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident

Kimiaki Saito ^a.*, Isao Tanihata ^b, Mamoru Fujiwara ^a, Takashi Saito ^b, Susumu Shimoura ^c, Takaharu Otsuka ^c, Yuichi Onda ^d, Masaharu Hoshi ^e, Yoshihiro Ikeuchi ^f, Fumiaki Takahashi ^a, Nobuyuki Kinouchi ^a, Jun Saegusa ^a, Akiyuki Seki ^a, Hiroshi Takemiya ^a, Tokushi Shibata ^g

Fig. 14. Statistics on coefficients of variation for ¹³⁷Cs concentrations among five soil samples collected at one location. The coefficient of variation represents the ratio of the standard deviation to the mean. The number of soil sampling locations within a certain range of the coefficient of variation is shown by a bar graph.

Fig. 2. Deposition density map for ¹³⁷Cs. The radioactivity per unit ground area is shown by the colored mark at the soil sampling location.

SAMPLING FOR RADIONUCLIDES IN THE ENVIRONMENT

Table 2.1. Selected coefficients of variation (C_{var} = the sample standard deviation/observed mean) observed for radionuclide activity densities among soil samples from within relatively small sampling plots.

Radionuclide	Description of study area	Plot area (m ²)	Within plot $C_{\rm var}$	Reference
²⁴¹ Am	Desert, Nevada Test Site, Nevada, USA	0.4	0.09-0.79 ^a	Gilbert and Doctor (1985)
²⁴¹ Am	Grassland, Rocky Flats, Colorado, USA	10^{4}	$0.13 - 1.16^{b}$	Ibrahim et al. (1996)
¹³⁷ Cs	Canyon, Los Alamos, New Mexico, USA	$< 10^{4}$	0.06-0.14	Nyhan et al. (1983)
¹³⁷ Cs	Trinity Site New Mexico	$< 10^{4}$	0.38 - 0.51	Nyhan et al. (1983)
¹³⁷ Cs	Shrub-heath, Ireland	$3.6 imes10^3$	0.36 - 0.51	McGee et al. (1995)
²¹⁰ Pb, ²¹⁰ Po	Sagebrush steppe, Wyoming, USA	${\sim}10^4$	0.38-0.56	Ibrahim and Whicker (1992)
²¹⁰ Pb, ²¹⁰ Po	U mill tailings, Wyoming	${\sim}10^4$	0.47 - 1.74	Ibrahim and Whicker (1992)
^{239,240} Pu	Grassland, Rocky Flats, Colorado	10^{4}	0.25-1.38 ^b	Ibrahim et al. (1996)
²²⁶ Ra	Properties, Grand Junction, Colorado, USA	15 - 270	0.66-1.53 ^c	Williams et al. (1989)
²²⁶ Ra	Properties, Grand Junction, Colorado	15 - 270	$0.08 - 0.29^{d}$	Williams et al. (1989)
²³⁸ U, ²³⁰ Th	Sagebrush steppe, Wyoming	${\sim}10^4$	0.36-0.50	Ibrahim and Whicker (1992)
²³⁸ U, ²³⁰ Th	U mill tailings, Wyoming	${\sim}10^4$	0.40 - 0.75	Ibrahim and Whicker (1992)

 ${}^{\mathrm{a}}C_{\mathrm{var}}$ decreased with aliquot mass.

 ${}^{\rm b}C_{\rm var}$ increased with depth of sample.

^cIndividual samples.

^d20-sample composites.

Figure 2.1. Observed coefficients of variation (C_{var}) for ²⁴¹Am in Nevada Test Site, USA, soil samples as a function of aliquot mass analyzed (redrawn from data in Gilbert and Doctor, 1985). The negative power function, $C_{var} = 0.83$ aliquot mass in $g^{-0.46}$, fitted to the data is shown as the solid line.

ISSN 1473-6691

Journal of the ICRU

NOT FOR PUBLIC RELEASI

ICRU REPORT 75

Sampling for Radionuclides in the Environment

XFORD UNIVERSITY PRESS

INTERNATIONAL COMMISSION ON RADIATION UNITS AND MEASUREMENTS

Optimization of soil sampling - minimum necessary amount COMET of the samples to evaluate the soil contamination density at the non-gradient sites

Radius of the soil samples influence

Typical variograms for ¹³⁷Cs when sampling by cylindrical sampler \varnothing 3.7cm

The radionuclide activities in the samples taken at the homogeneously contaminated site at the distance more than 1 m between each other in the first approximation will be statistically independent values

Radius of soil samples influence

Table 7.1. Radiuses of sample influence ¹³⁷Cs on different sites, when sampling by a cylindrical sampler 3.7 cm in a diameter

The site	The type of fallout	The type of land	<i>R</i> sa , м
		use	
Site S-P 3	fuel, <i>DFP</i> ≈25%	fallow land	0.4
Site S-P 9	fuel, <i>DFP</i> ≈25%	ploughed field	0.9
Site S-P 7	fuel, <i>DFP</i> ≈25%	fallow land	0.15
Site S-P 11	fuel, <i>DFP</i> ≈25%	fallow land	0.25
Site S-P 13	condensate, DFP<10%	ploughed field	0.4
Site S-P 15	condensate, DFP<10%	ploughed field	0.25
Site S-P 16	condensate, DFP<10%	waterless valley	0.7
	Average value		0.44

Thus, radionuclide content in dot samples (including the samples consisting of several located nearby samplings made by a sampler 3.7cm in a diameter), selected on non-gradient site on distance (centre-to-centre sampling) > 1 m from each other at the sampling area no more than 0.014 m², should be considered as statistically independent magnitudes (statistically independent samples).

The experimental distribution of radionuclides insoil profile (1995).

in soddy-podzolic sandy soil

In peaty soil

Distribution of radionuclides down the sole **MET** profile (%), site 13, sandy, low humus soil, 1996.

The long-term observations of the vertical migration of ⁹⁰Sr, ¹³⁷Cs and transuranium elements show that their main activities at the territory contaminated as a result of the ChNPP accident are found now in the upper 20

cm soil layer

Examples of the ⁹⁰Sr distribution in the vertical profiles and cross-sections of sandy soils

Soil sampling parameter

- Sampling depth –30 cm for arable soil and in a few years after accident
- Sampling area \geq 50 cm²
- Amount of samples per site \geq 5
- Diameter of sampler \geq 37 mm
- Step between sampling points 5-10 m

Map of the soil sampling sites in the near zone of the ChNPP

Radioactivity measurement in the heterogeneously contaminated MET samples

Conclusions - Measurement of samples

- Amount of sub-samples per site 3 (100cm³)+1(1000 cm³)
- For ¹³⁷Cs from 4 sup-samples: (C_{max}-C_{min})/(C_{av})<15%
- Relative uncertainties of measurement in samples
 ⁹⁰Sr/¹³⁷Cs < activity of ⁹⁰Sr or Pu
- For minimization of the uncertainties all radionuclides activity measurements must be performed in the same sample
- U-Zr-O particles represent <20% of activity of radionuclides (⁹⁰Sr or Pu) in the fuel component of Chernobyl fallout

Statistical performances of plant contamination

Fig. 2.18.- The spatially-statistical structure of oenothera biennis (L) contamination with ¹³⁷Cs on the experimental site S-P 15. Donkey grass did not grow in the upper corner of the site

0

Fig. 2.20.- The spatially-statistical structure of elytrigia repens (L) Nevski contamination with ¹³⁷Cs on the experimental site ¹³⁷Cs S-P 3.

Statistical performances of plant contamination

Fig. 2.21.- The values of standard deviation estimations of log of ¹³⁷Cs specific contents in the plants samples collected from various experimental sites.

İET

Statistical performances of pine wood contamination (Perevolotskii A., 2013)

Таблица 5.10 - Варьир	ование удельной ак	тивност	ти ¹³⁷ Cs в д	цревес	сине
сосны обыкновенной	различных классов ј	роста и	развития	[4-A, (c. 149]

K TAGO	Danyan		Уде	льная актив	ность 137Cs, Бк/	г			
роста	газмер выбор-	Мини-	Макси-	Сред-	Коэффициент	95% доверитель- ный интервал			
и развития	ки	мум	мум	нее	вариации, %	min	max		
[32-A]									
Ι	10	419	1700	982±152	49	570	1321		
II	10	413	1222	626±81	41	419	623		
III	10	175	637	323±44	43	213	398		
IV	10	86	423	229±40	52	126	265		
V	10	84	674	267±45	45	155	329		
			. [320]		•			
I	13	347	790	510±30	21	445	577		
II	18	338	826	571±32	24	503	639		
III	16	358	753	529±30	23	465	594		

SAMPLING FOR RADIONUCLIDES IN THE ENVIRONMENT

Table 2.2. Coefficients of variation (C_{var}) observed for radionuclide activity densities in terrestrial vegetation samples.

Radio-nuclide	Location	Plant type	$\begin{array}{c} Sampling \ plot \\ area \ (m^2) \end{array}$	Within plot $C_{\rm var}$	Reference
¹³⁷ Cs	Colorado, USA	Shrubs	465	0.13-0.16	Remmenga and Whicker (1967)
¹³⁷ Cs	Ireland	Calluna vulgaris	$3.6 imes 10^3$	0.12	McGee et al. (1995)
	Ireland	Juncus squarrosus	$3.6 imes 10^3$	0.20	
Total γ^{a}	Colorado	Trees	465	0.10	Remmenga and Whicker (1967)
	Colorado	Shrubs	465	0.13	
	Colorado	Herbs	465	0.23	
	Colorado	Grasses	465	0.41	
^{239,240} Pu	Rocky flats, Colorado, USA	Lichens	104	$0.52 - 1.26^{b}$	Thomas and Ibrahim (1995)
	Background, Colorado	Lichens	$4 imes 10^4$	0.16^{c}	
²¹⁰ Pb, ²¹⁰ Po	Wyoming, USA	Herbs	$\sim 10^4$	$0.81 - 1.15^{d}$	Ibrahim and Whicker (1992)
				$0.52 - 0.59^{e}$	
²²⁶ Ra	Wyoming	Herbs	$\sim 10^4$	1.04^{d}	
				0.63 ^e	
²³⁸ U, ²³⁰ Th	Wyoming	Herbs	${\sim}10^4$	$1.09 - 1.96^{d}$	
				$0.86 - 1.14^{e}$	
⁹⁵ Zr	Colorado	Shrubs	465	0.13 - 0.46	Remmenga and Whicker (1967)
¹³⁷ Cs	Great Britain	Mushrooms	Not reported	0.31 - 1.79	Barnett et al. (1999)

^aTotal γ activity due mainly to radionuclides from global fallout ($^{137}Cs,~^{95}Zr,~^{144}Ce,$ etc.). ^bMainly contamination from on-site releases of $^{239,240}Pu$.

^cSite in northern Colorado affected only by global fallout.

^dExposed-tailings site at a uranium mill.

"Natural area unaffected by uranium mill.

Volume 6 No 1 2006

ISSN 1473-669

Journal of the ICRU

NOT FOR PUBLIC RELEASE

ICRU REPORT 75

Sampling for Radionuclides in the Environment

OXFORD UNIVERSITY PRESS

INTERNATIONAL COMMISSION ON RADIATION UNITS AND MEASUREMENTS

(

Conclusion 2

 The standard deviation of log of the specific ¹³⁷Cs content in plant samples does not depend on the density contamination, type of fallout, type of vegetation. At first approximation with sampling squares of plants $\leq 1 \text{ m}^2$ and ratio error of measurement of the ¹³⁷Cs content in sub-samples of vegetative samples \leq 10 % at the level $\pm \sigma$ is estimated with value 0.37±0.11, on the Chernobyl traces and on global radioactive fallout

Radius of vegetative samples influence

Table 7.2. Estimations of radius influence of plants sample for various experimental sites at definition of the ¹³⁷Cs content.

N₂	Sites group	Radius of plants sample influence
		when defining 137 Cs content R_p , m
1	Arable lands	5
	(triticum (clurum vulgare), secale (ce-	
	reale), avena (sativa), oenothera bien-	
	nis (L))	
2	Former arable lands and fallow	2.8
	lands	
	(calamagrostis epigeios (L) Roth)	
3	Former arable lands and fallow	7
	lands	
	(elytrigia repens (L) Nevski)	

 The following conclusion is possible to draw on the basis of the received results: the centre-to-centre distance of plants sampling not less than 8-10 m in all cases provides their statistical independence of the selected samples on ¹³⁷Cs content.

Optimization of plants sampling

relative uncertainty δ , %

Statistical characteristics of the transfer factors of ¹³⁷Cs in a "soil - plant"

chain (Tf and CR)

Fig. 3.5– The values of standard deviation of log of the transfer factor of ¹³⁷Cs into the various plants on the experimental sites.

Fig. 3.8– Averaged volumes of standard deviation of log of the transfer factor of ¹³⁷Cs for various crop production groups in the definite year, calculated on P.F. Bondar's data [69].

Fig. 3.6– The values of standard deviation of log of the transfer factor of ¹³⁷Cs into the various agricultural grain-crops in the definite year calculated on P.F. Bondar's data [69].

Fig. 3.7– The values of standard deviation of log of the transfer factor of ¹³⁷Cs into various vegetable and technical crops in the definite year calculated on P.F. Bondar's data [69].

The nomogram to account minimum necessary amount of conjugate **Second Second** samples "soil - plant" to evaluate the median of transfer factor with prescribed ratio error when sampling and measuring base parameters and accuracy if confidential probability is p=0.95.

Conclusion 3

- the transfer factor of ¹³⁷Cs into plants is the random variable and it is described by the logarithmically normal law of the probability distribution;
- the average quadratic deviation of the log of the transfer factor of ¹³⁷Cs in plants does not depend on the density of contamination, the type of fall-outs, the kind of vegetation and its various parts; in the first approximation when selecting the conjugate "soil plant" samples, when squares of sampling for plants $\leq 1m^2$ and > 0.005 m² for soil and relative error of measurement of the ¹³⁷Cs content in the samples of soil and plants does not exceed 10 % at a level $\pm \sigma$ is evaluated by the value **0.49±0.06**.

Fig. 6.4 – The nomograms to account minimum necessary amount of conjugate samples "soil – plant" to confirm the prescribed multiplicity of the ratio between transfer factors medians.

Statistical and temporary performances of milk contamination with ¹³⁷Cs in settlements

Annual dynamics of milk contamination with ¹³⁷Cs in settlements

Annual dynamics of standard deviation of the log of milk contamination with ¹³⁷Cs in settlements

Fig. 4.6.- Multiplicity of milk contamination with ¹³⁷Cs increase in grazii comparing to stabling period in different settlements.

Fig. 4.7. - Annual dynamics of standard deviation of the log of milk contamination with $^{137}\mathrm{Cs}$ in settlements.

Уточнить sampling of potato and milk in settlements for average internal dose estimations

Distribution of ¹³⁷Cs in potato in Yelne village for one family in a village (b)

Fig. 4.6.- Multiplicity of milk contamination with ¹³⁷Cs increase in grazing period comparing to stabling period in different settlements.

¹³⁷Cs activity in milk of the cows of one village from different pastures

COMET

Histograms of milk contamination with ¹³⁷Cs for the site M4 in typical months of stabling and grazing periods and their approximation by the logarithmically normal

law

Statistical performances of standard deviation of the log of ¹³⁷Cs concentration in milk of PSF

Characteristics	standard deviation of the log of ¹³⁷ Cs					
	concentration in milk					
	Stabling period	Pastoral period				
Average value	0.67	0.56				
Standard deviation	0.19	0.19				

The nomogram to account minimum necessary amount of samples to evaluate the median of milk contamination with prescribed ratio error in the definite moment of grazing period when p=0.95 and

 δ_{meas} is no more than 15 % at the level $\pm 2\sigma$.

The nomogram to account minimum necessary amount of milk samples, that guarantee the prescribed ratio error to evaluate average annual individual doze of an internal exposure when sampling twice a year (once in a stabling period and once in a grazing period)

The nomogram to account minimum necessary amount of milk samples, that guarantee the prescribed ratio error to evaluate annual average individual doze of an internal exposure when sampling fourfold a year (twice in stabling period and twice in grazing period).

C

The nomogram to account minimum necessary amount of milk samples, which guarantee the prescribed ratio error, to evaluate average annual individual doze of an internal exposure when sampling during the year (monthly).

Optimization of fish sampling

Yu. V. Khomutinin, V. O. Kashparov

Ukrainian Institute of Agricultural Radiology of NUBiP of Ukraine, Kyiv

OPTIMIZATION OF FISH SAMPLING PROCEDURE FOR EVALUATING THE SPECIFIC ACTIVITY OF ¹³⁷Cs, ⁹⁰Sr AND ACCUMULATION COEFFICIENTS

Problem of optimization of sampling procedure for evaluating the median of specific activity and accumulation coefficients of the ¹³⁷Cs and ⁹⁰Sr for the populations of different species of fish lived in the pond was observed. Estimates of the geometric standard deviation of the specific activity ($1.2 \div 1.9$) and accumulation coefficients ($1.8 \div 2.3$) of radionuclides for different species of fish were obtained. Minimum number of samples required for evaluating the median of the specific activity and corresponding accumulation coefficients of ¹³⁷Cs and ⁹⁰Sr with desired relative error was determined. In order to obtain the median value of the specific activity of ¹³⁷Cs with relative error $\delta = 20$ % and confidence level of p = 0.95 at the time of harvest the following numbers of fish samples should be selected for the activity measurement: 16 - 20 samples of pike, perch, sunder, rudd and grass carp; 10 - 13 samples of catfish, bream, tench, carassius, pelecus cultratus; 8-9 samples of bream, roach, carp(common carp), bighead carp; and 5 samples of chub.

Keywords: ¹³⁷Cs, ⁹⁰Sr, fish, specific activity, accumulation coefficients, Chornobyl accident.

ISSN 1818-331 Х
 ЯДЕРНА ФІЗИКА ТА ЕНЕРГЕТИКА 2016 Т. 17
 $N\!\!\!_{\odot}\,2$ 189

коэффициентов накопления ¹³⁷ Cs и ⁹⁰ Sr для рыб различных видов							
Вид рыбы	137Cs	Вид рыбы	90Sr				
Щука (Esox lucius)	$2,01 \pm 0,05$	Щука (Esox lucius)	$1,73 \pm 0,06$				
Окунь, чехонь (Perca fluviatilis, Pelecus cultratus)	$2,03 \pm 0,05$	Окунь, чехонь, судак, сом, налим (Perca fluviatilis, Pelecus cultratus, Stizostedion lucioperca, Silurus glanis, Lota lota)	$2,\!10\pm0,\!07$				
Судак (Stizostedion lucioperca)	$2,\!01\pm0,\!09$	Лещ, густера, синец (Abramis brama, Blicca bjoerkna, Ballerus ballerus)	$1{,}88\pm0{,}07$				
Сом (Silurus glanis)	$1,\!66 \pm 0,\!08$	Плотва, голавль, красноперка, язь (Rutilus rutilus, Leuciscus cephalus, Scardinius erythrophthalmus, Leuciscus idus)	2,18 ± 0,11				
Лещ, густера, синец (Abramis brama, Blicca bjoerkna, Ballerus ballerus)	2,30 ± 0,08	Карп (сазан), линь, толстолобик (Cyprinus carpio, Tinca tinca, Hypophthalmichthys molitrix)	$1,\!81\pm0,\!07$				
Плотва, голавль, красноперка, язь, жерех (Rutilus rutilus, Leuciscus cephalus, Scardinius erythrophthalmus, Leuciscus idus, Aspius aspius)	1,82 ± 0,05	Карась, жерех, белый амур (Carassius carassius, Aspius aspius, Ctenopharyngodon idella)	2,21 ± 0,11				
Карп (сазан), линь, толстолобик (Cyprinus carpio, Tinca tinca, Hypophthalmichthys molitrix)	$1,\!88\pm0,\!07$						
Карась (Carassius carassius)	$2,29 \pm 0,10$						
Налим (Lota lota)	$1,\!88\pm0,\!13$						

Таблица 3. Усредненные оценки геометрического стандартного отклонения GSD се

-

Minimum number of samples required for evaluating the median of the specific activity and corresponding accumulation coefficients of 137Cs and 90Sr with desired relative error was determined. In order to obtain the median value of the specific activity of 137Cs with relative error □ ≠ 20 % and confi-dence level of p = 0.95 at the time of harvest the following numbers of fish samples should be selected for the activity measurement: 16 - 20 samples of pike, perch, sunder, rudd and grass carp; 10 - 13 samples of catfish, bream, tench, carassius, pelecus cultratus; 8-9 samples of bream, roach, carp(common carp), bighead carp; and 5 samples of chub.

Вид рыбы		Оценка 1	медианы	I					
		в момент вылова				оценка медианы			
		Cs	90	Sr	157	Cs	90Sr		
		$\delta_f = 50 \%$	$\delta_f = 20\%$	$\delta_f = 50\%$	$\delta_f = 20\%$	$\delta_f = 50\%$	$\delta_f = 20\%$	$\delta_f = 50 \%$	
Щука (Esox lucius)	20	35	17	32	36	51	33	48	
Окунь (Perca fluviatilis)	17	32	10	26	30	45	11	26	
Судак (Stizostedion lucioperca)	17	32	12	27	22	37	16	31	
Сом (Silurus glanis)	13	28	18	33	28	43	22	37	
Лещ (Abramis brama)	9	24	13	29	14	30	21	36	
Густера (Blicca bjoerkna)	8	24	9	24	12	27	12	27	
Плотва (<i>Rutilus rutilus</i>)	9	24	10	25	12	27	18	33	
Красноперка (Scardinius erythrophthalmus)	16	31	5	20	24	39	7	22	
Линь (Tinca tinca)	9	24	10	25	18	33	14	30	
Kapacь (Carassius carassius)	10	25	26	41	19	34	54	70	
Сазан, карп (Cyprinus carpio)	8	24	12	27	29	44	23	38	
Толстолобик (Hypophthalmichthys molitrix)	7	22	17	32					
Белый амур (Ctenopharyngodon idella)	20	35	16	31					
Чехонь (Pelecus cultratus)	18	33	5	20	18	33	5	20	
Голавль (Leuciscus cephalus)	5	20			9	24	8	24	

Our institute has developed the special standards for the Agricultural Ministry of Ukraine

Каїв МІНАГРОПОЛІТИКИ УКРАЇНИ Київ МІНАГРОПОЛІТИКИ УКРАЇНИ

Київ МІНАГРОПОЛІТИКИ УКРАЇНИ

Київ МІНАГРОПОЛІТИКИ УКРАЇНИ

COMET

IAEA

Guidelines on soil and vegetation sampling for radiological monitoring purposes

U. Barnekov, S. Fesenko, V. Kashparov, G. Kis-Benedek, G. Matissov, Yu. Onda, N. Sanzharova, A. Tyler, B. Varga

FOREWORD

The IAEA attaches high importance to the dissemination of information that can assist Member States with the development, implementation, maintenance and continuous improvement of environmental radiological monitoring systems, including the development and implementation of optimized sampling programs for radioactivity. In particular, the IAEA TECDOC 1415 "Soil sampling for Environmental Contaminants" was published in 2004. However, the document was limited to soil sampling only and did not provided any guidelines for taking samples other than of soil.

Since the publication of the IAEA TECDOC 1415 a number of international documents, such as the ICRU 75 report and ISO documents on soil and vegetation sampling were published. In 2010, the IAEA published Safety Reports Series document No. 64 "Programmes and Systems for Source and Environmental Radiation Monitoring", which provides information on practical considerations affecting the design and operation of monitoring programmes and systems in accordance with the relevant IAEA Safety Standards. The intended audience includes national regulatory bodies and other agencies and organizations involved in the design and operation of source and environmental radiation monitoring programmes and systems; and experts involved in the assessments of public exposure based on radiological monitoring data. However, practical application of this Safety Report requires support from a series of accompanying documents that serve as practical guidelines on sampling programmes for soil and vegetation. Therefore, in 2013 the IAEA initiated an update of the IAEA TECDOC 1415 "Soil sampling for Environmental Contaminants" extending the scope of the document to include vegetation sampling.

