

Samples preparation and Introduction to the methods of radioactivity measurements

S. Levchuk

National University of Life and Environmental Sciences of Ukraine

1

- ✓ Sample pretreatment
 - ✓ Types of environmental samples and their features
 - ✓ Target radionuclides
 - Main processes of treatments
- Introduction to the methods of radioactivity measurements
 - Main definitions
 - Ionizing radiation
 - Interaction with matter
 - Main detector types
 - Analytical radiometric methods

✓ QA/QC

Main goals:

- to homogenise sample matrix as well as possible
- to preserve sample for storage
- to prevent losses of a target radionuclide
- to prevent biological decay

Types of samples:

- Liquids: surface and underground water, milk etc.
- Soil
- Plants: grass, wood, leaves, seeds, berry etc.
- Foodstuff

Target radionuclides:

Principal nuclides	Production mode	Half-life	Type of radiation	Principal food pathways	
³ Н	A/FP	12.4 y		All foods	
¹⁴ C	A	5.73 y	β		
³⁵ S	A	87.4 days		Milk and crops	
⁹⁹ Tc	FP	0.22 [.] 10 ⁶ y		Crops, crustaceans and offal	
⁹⁰ Sr	FP	28.5 y		Milk, mollusks and animal products	
⁶⁰ Co	Α	5.3 y		Mollusks	
¹⁰⁶ Ru	FP	1 y		Crops, mollusks and offal	
125	A	60.1 days			
129	FP	15.7 [.] 10 ⁶ y	βγ	Milk	
131	FP	8 days			
¹³⁴ Cs	A	2.1 y			
¹³⁷ Cs	FP	30.1 y		Milk, fish, shellfish and animal products	
²¹⁰ Pb	N	22 y		Mollusks and offal	
²¹⁰ Po	N	140 days	α		
²³⁸ Pu	A	87. 74 y		Mollusks and offal	
²³⁹ Pu	A	24000 y			
²⁴¹ Am	A	432	αγ		

Main processes

Liquid

Milk

¹³⁷Cs – direct measurement using a gamma-spectrometer

⁹⁰Sr – radiochemical separation

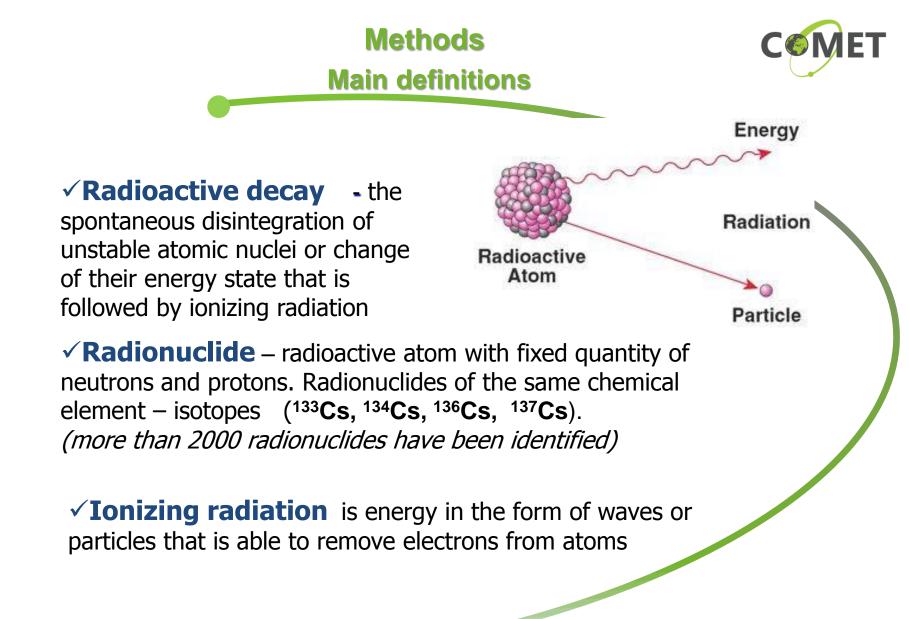
Storage – use preservative (NaHSO₃, methanal C_2HO) and keep in fridge

Fieldcourse on Chornobyl fallout

Main processes

Soil

Drying at 105°C at an oven or at room temperature, sieving, grinding, collecting of subsamples for analysis Equipment: oven, sieves (1mm), lab mills, scale Gamma- emitters – direct measurement β and α – radiochemical separation



Main processes

- Plant and foodstuffs samples
- Drying at 105°C at an oven to stable weight, milling, collecting of subsamples for analysis
- Moisture content obligatory
- Equipment: oven, lab mills, blender, scale
- Gamma- emitters direct measurement

β and α radiochemical separation

Activity – decay rate

The decay rate is a nuclear property independent on temperature, pressure, chemical form of the isotope, and physical state of the substance.

$A = \frac{dN}{dt} \quad BUT \ NOT \ concentration!!!$

¹³⁷Cs 1 Bq -- 3*10⁻¹⁰ mg ²³⁸U 1 Bq -- 20 μg

SI unit Becquerel (Bq) (1 decay per second) Becquerel is a measure of the rate (not energy!) of radiation emission from a source. 1 MBq=10⁶ Bq

1 kBq=1000 Bq 1 mBq=0,001 Bq

Curie (Ci) – off-system unit, 1 Ci=3,7·10¹⁰ Bq

HALF LIFE

Radiation intensity from a radioactive source diminishes with time because more and more radioactive atoms decay and become stable atoms.

Half-life $(T_{1/2})$ is the period during which the radiation intensity decreases by half. This happens because half of the radioactive atoms will have decayed in one half-life period.

$$T_{1/2} (^{137}Cs) = 30,17 \text{ years}$$

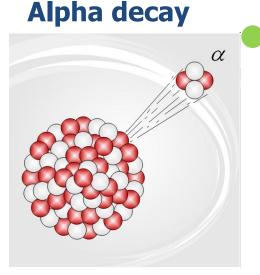
$$A(t) = A(0) \cdot e^{-\lambda t}$$

$$\lambda = \frac{\ln(2)}{T_{1/2}} \approx \frac{0.693}{T_{1/2}}$$

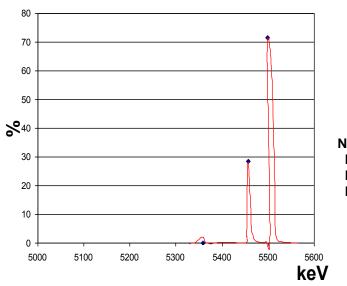
Half-lives widely differ from one radioactive material to another and range from a fraction of a second to millions of years.

The major types of radiation emitted during radioactive decay are alpha particles, beta particles, and gamma rays

Decay mode	Mass	number	Atomic	number
	Parent	Daughters	Parent	Daughters
lpha- decay 238 Pu \Rightarrow 234 U+ $lpha$ +X	Α	A-4	Z	Z-2
β ⁻ - decay ¹³⁴ Cs ⇒ ¹³⁴ Ba+ β ⁻ +γ	Α	Α	Z	Z+1
β ⁺ - decay ²² Na+ β ⁺ \Rightarrow ²² Ne+γ	Α	Α	Z	Z-1
Isomeric transition (γ - ray) ^{137m} Ba \Rightarrow ¹³⁷ Ba + γ	Α	Α	Z	Z

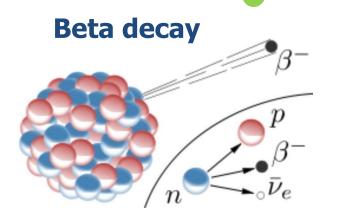

OTHER types of radiation

²⁵² Cf	Jπ	Δ(MeV)	T _{1/2}	Decay Modes
	0+	76.0352	2.645 y 8	α : 96.91 % SF : 3.09 %


 $(A, Z) \rightarrow (A - 1, Z) + n$

²²³ Ra	Jπ	Δ(MeV)	T _{1/2}	Decay Modes
	3/2+	17.2349	11.43 d 5	α : 100.00 % ¹⁴ C : 8.9E-8 %


consist of two protons and two neutrons bound together into a particle identical to a helium nucleus Charge **2+** Average energy range - **3-7 Me**V A radionuclide emits alpha particles that have discrete spectrum Alpha particles are emitted by radioisotopes with atomic numbers greater than **82 (Pb)**.


lumber of Alphas :	15
Number of Betas :	0
Number of Gammas :	33
Number of X-Rays :	22

^A _Z R
$$\Rightarrow$$
 ^{A-4} _{Z-2} E+ α
²³⁸Pu \Rightarrow ²³⁴ U+ α +X, γ

 $\begin{array}{l} \alpha_1 - 5499,21 \ \text{keV} \ \textbf{-71,5\%} \\ \alpha_2 - 5456,5 \ \text{keV} \ \textbf{-28,4\%} \\ \alpha_3 - \ \textbf{5358,3} \ \text{keV} \ \textbf{-0,115\%} \\ X_1 - 43,49 \ \text{keV} \ \textbf{-3,8} \ \textbf{\cdot10^{-2}\%} \\ X_2 - 99,86 \ \text{keV} \ \textbf{-0,8} \ \textbf{\cdot10^{-2}\%} \\ X_3 - 152,72 \ \text{keV} \ \textbf{-1,1} \ \textbf{\cdot10^{-3}\%} \end{array}$

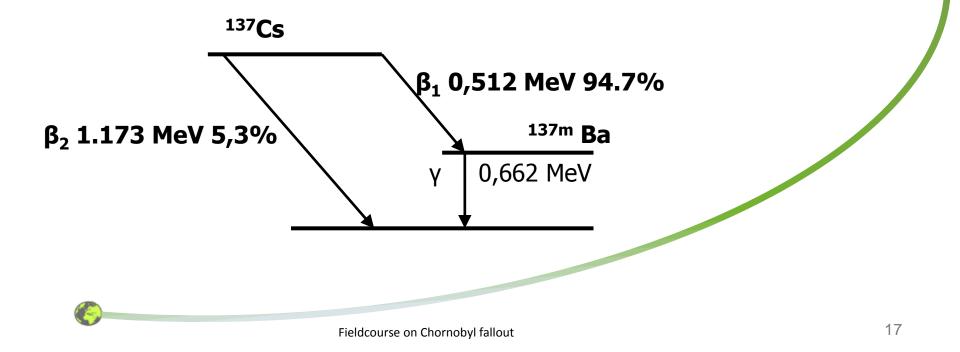
Beta particles are the electrons from the nucleus, the term "beta particle" being an historical term used in the early description of radioactivity.

During the decay, the weak interaction converts a neutron (n) into a proton (p) while emitting an electron (e-) and an antineutrino (v_e):

 $n \rightarrow p + e^- + v_e$

 $Z_{av}^{i0} \xrightarrow{90}{F_{max}} x_{av}^{i0} \xrightarrow{90}{F_{max}} x_{av}^{i0} \xrightarrow{90}{F_{max}} x_{av}^{i0} \xrightarrow{1200}{1600} 2^{i} \xrightarrow{F_{max}} x_{av}^{i0} \xrightarrow{keV}$

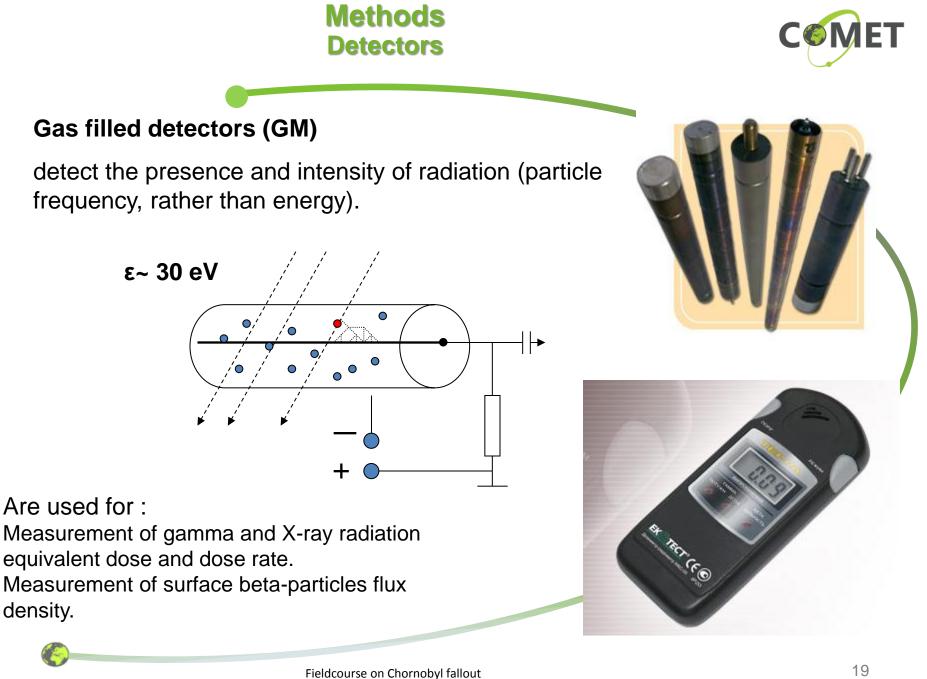
A radionuclide emits electrons (positrons) that have continuous spectrum


The radiation hazard from betas is greatest if the beta-emitting radionuclides are ingested or inhaled

	Eav	$\approx 1/3 E_{\text{max}}$
	E _{av} (keV)	E _{max} (keV)
⁹⁰ Sr	200	544
90 Y	931	2245

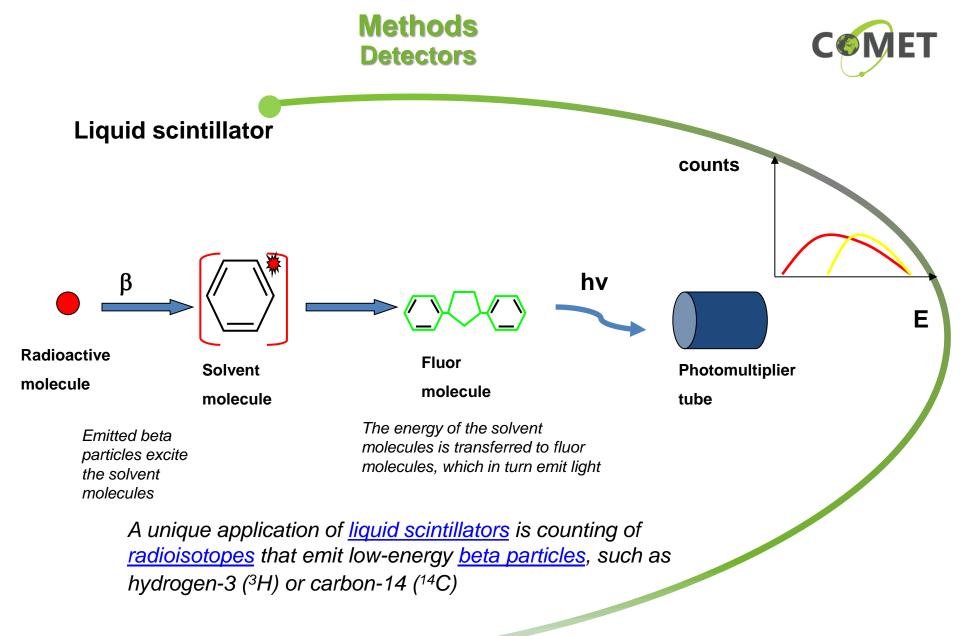
Gamma ray

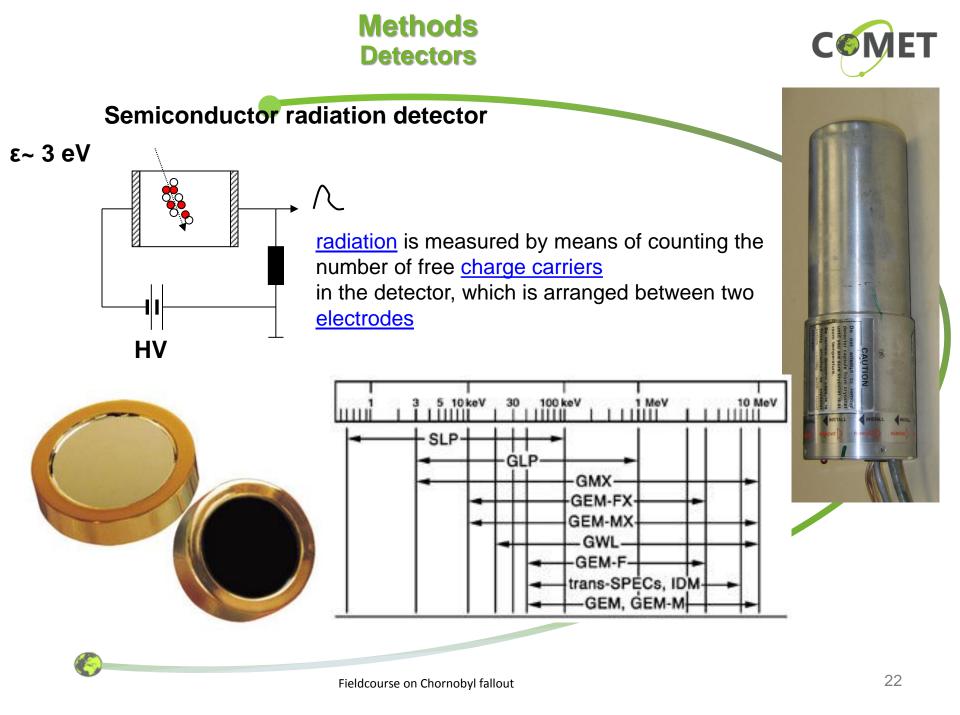
A nucleus which is in an excited state may emit one or more photons of discrete energies. The emission of gamma rays does not alter the number of protons or neutrons to the nucleus but instead has the effect of moving the nucleus from a higher to a lower energy state (unstable to stable). Gamma ray emission frequently follows beta decay, alpha decay, and other nuclear decay processes.


Interaction with matter

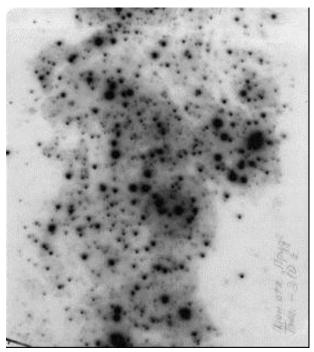
✓ Charged particles and gamma quantum loss their energy on their way in matter due to interaction with atom electrons. Atoms of the absorber are getting ionized (exited).

✓The interaction is resulted in positive and negative charge accumulation, photon emissions.


✓ Values of the accumulated charge or the photons energy sometimes are proportional to energy of an ionization particle or quanta.


✓ Principles of all radiation detectors are based on secondary effects caused by interaction of irradiation with matter.

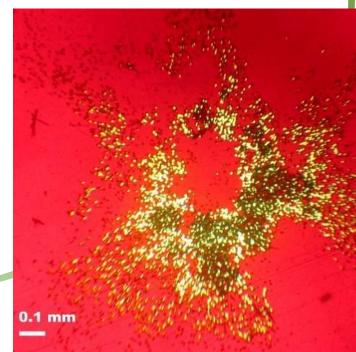
Fieldcourse on Chornobyl fallout

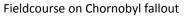


Methods Detectors

Track detectors

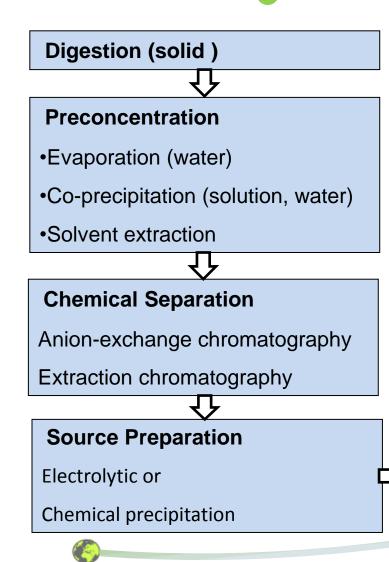
X-ray film




When a charged particle slows down and stops in a solid material, the energy that it deposits along its track can cause permanent damage in the material.

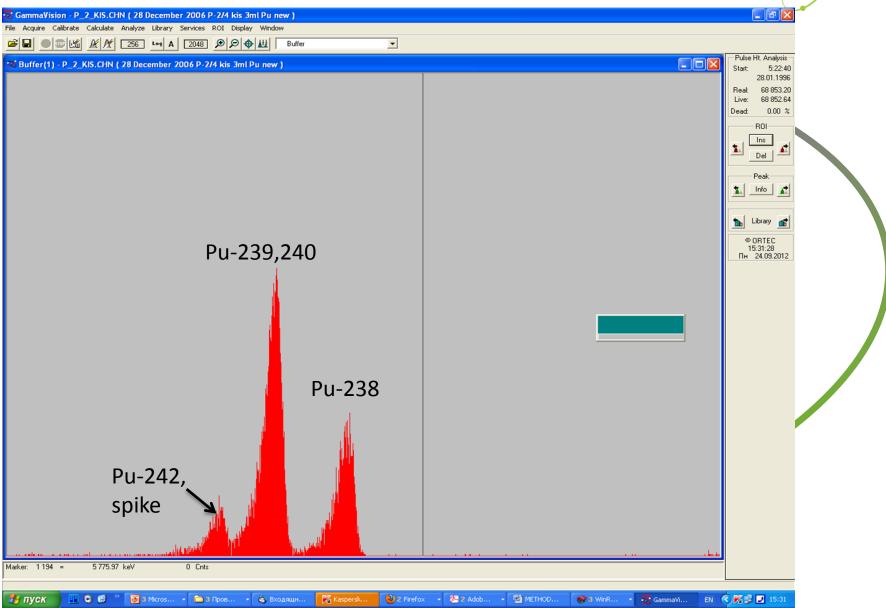
Exposition

- Development
- Calculation


nuclear film

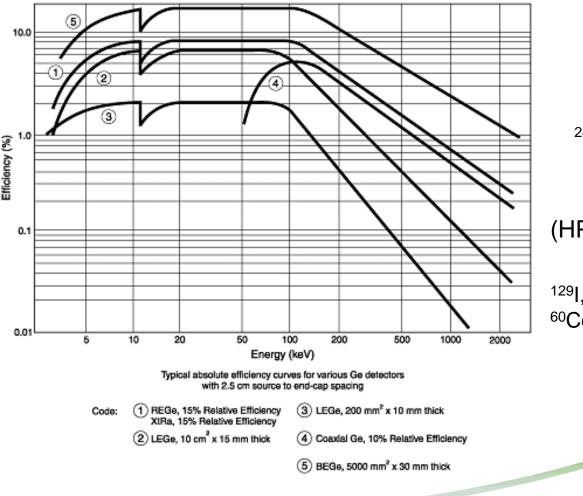
Alpha emitting radionuclides

U, Pu, Am, Cm


Anion-exchange chr.:

separation RNs in strong acids using anion-exchange resins (anionic nitrate or chloride complexes – $Pu(NO_3)^{2-}_{6}$)

Extraction Chromatography:



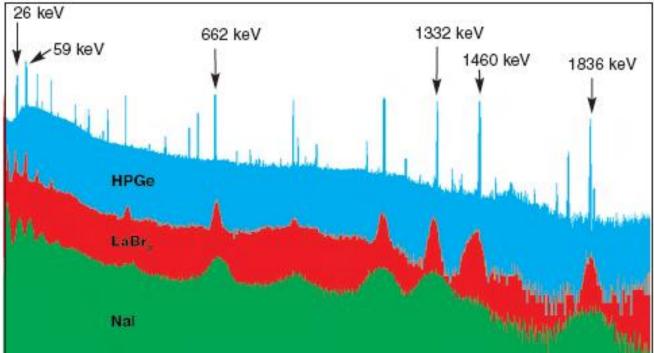
COMET

Analytical radiometric methods

Gamma-spectrometry

Nuclides

(HPGe)


²⁴¹ Am, ²³⁵U ¹⁰⁶Ru, ¹³¹I, ⁶⁰Co, ¹⁰³Ru, ¹³⁴Cs, ¹³⁷Cs, ¹⁴⁴Ce, ¹⁹²Ir

(HPGe extended energy range)

¹²⁹I, ²¹⁰Pb, ²⁴¹ Am, ²³⁵U ¹⁰⁶Ru, ¹³¹I, ⁶⁰Co, ¹⁰³Ru, ¹³⁴Cs, ¹³⁷Cs, ¹⁴⁴Ce, ¹⁹²Ir

Gamma-spectrometry

Advantage:

High energy resolution Stability

Low MDA

Disadvantage:

Quit expensive

Cooling is needed

Advantage:

Inexpensive Without cooling High efficiency

Disadvantage:

Low energy resolution

Higher MDA

Gamma spectrometer with HPGe detector (ORTEC, USA)

PURPOSE

The spectrometers are designed for determination of qualitative and quantitative composition of radionuclides in samples and are used for determination of specific activity of the wide set of radionuclides (¹³⁷Cs, ⁹⁰Sr, Nat-Ra, Nat-Th, ⁴⁰K and others.)

	Gamma	PERFO	RMANCE	I	Beta	
Energy range of gam Max. counting rate, s	•	0.1-3 ≤10⁴	-	d intensity ir 200 keV, cps	n energy range s.	<1.4
			Energy ran MeV	ge of registe	ered beta-emiss	ion, 0.1-3
MDA 1 hour exposi Marinelly cup, Bq	tion in 1L		MDA by	2 hours exp	position (p=1g/n	nl , Bq/sample)
•	tion in 1L 1.2	-	MDA by	2 hours exp	oosition (ρ=1g/n 160 ml	nl , Bq/sample) 10 ml
Marinelly cup, Bq		-	MDA by	2 hours exp 90 Sr		
Marinelly cup, Bq ¹³⁷ Cs	1.2	- -	MDA by - -		160 ml	10 mł

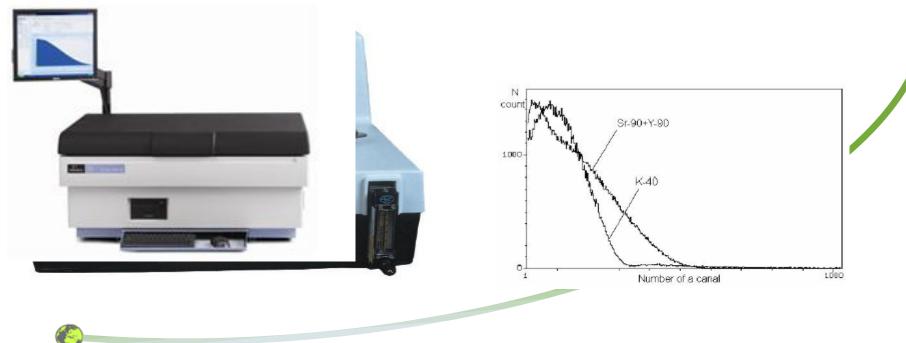
COMET

Beta emitting radionuclides

Radiochemical separation is needed in the most cases

Radionuclide

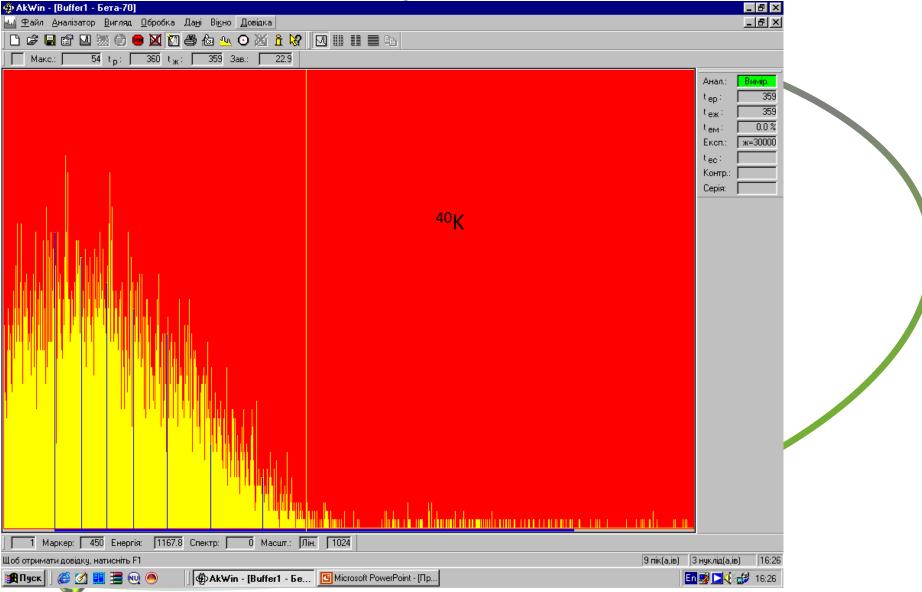
⁹⁰Sr, ¹³⁷Cs


³H, ¹⁴C, ⁹⁹Tc

³⁵S, ⁸⁹Sr, ⁹⁰Sr

Instrumentation

Low background beta radiometers or liquid scintillation counting system


Beta spectrometer

Fieldcourse on Chornobyl fallout

Beta spectrums

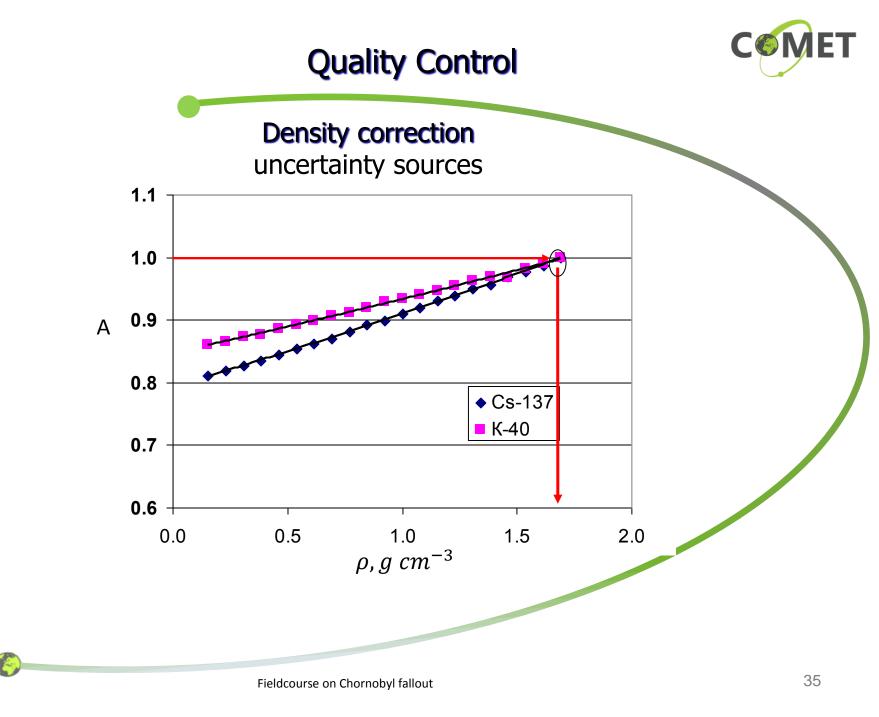
Fieldcourse on Chornobyl fallout

COMET

Quality Assurance/Quality Control


QA is an integral part of a laboratory analysis program. It provides a means to deliver valid and traceable results, an ability to identify and correct anomalies, repeatability, assurance that errors will be minimal and stochastic.

ISO/IEC 17025:2005 specifies the general requirements for the competence to carry out tests and/or calibrations, including sampling in following areas:


- ✓ Organization and management.
- ✓ Document control.
- ✓ Contracts and procurement.
- ✓ Corrective action.
- ✓ Control of records.
- ✓ Audits.
- Personnel qualifications and training.
- ✓ Facility infrastructure and security.
- ✓ Validation of methods, uncertainty, and measurement traceability.
- ✓ Equipment.
- Analytical procedures.
- Calibration and maintenance.
- QC reference standards, blanks, X-charts, proficiency testing.
- Documentation and reporting.
- Sampling.

ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories

Quality Control

Quality control X-charts 0.2 0.15 Background count rate, cps 0.1 0.05 0 10 20 30 40 50 0 Date of measurement

Quality Control

The sources of uncertainties and their quantification in gamma-spectrometry

Source	Symbol	Range, %	Typical value ,%
Counting	Ν	0.1-20	5
Emission probability	Y	0.1-11	<2
Self attenuation correction	K ₃	0.1-5	<1
Frue coincidence correction	K ₅	1-15	<3
alibration	3	1-5	2
Radiochemical procedures		1-10	3
Neight	М	0.01-1	<0.5

Thank you for your attention!!!